硅光子模斑转换器的研究进展

胡娟,林欢,汪维军,陈华,方青 昆明理工大学理学院,云南昆明 650500

摘要 硅光子模斑转换器是硅光子集成芯片与外部光纤连接的关键器件,在集成光路中起着至关重要的作用。标 准光纤的模斑尺寸与纳米光子波导的模斑尺寸不匹配,导致标准光纤与纳米级硅波导直接对接时存在很大的耦合 损耗,而硅光子模斑转换器能够显著减小它们之间的光损耗。硅光子模斑转换器的一端具有较大的模斑尺寸,与 标准光纤的模斑尺寸相匹配;其另一端具有较小的模斑尺寸,与纳米硅光子波导的模斑尺寸相匹配,因此能够显著 减小标准光纤与纳米硅光子波导之间的光连接损耗。综述了不同结构转换器的特点,对不同类型的转换器在结 构、性能以及应用上的优缺点进行了比较与分析,对硅光子模斑转换器的前景进行了展望,并提出一些看法。 关键词 集成光学;硅光子模斑转换器;光栅耦合器;锥形模斑转换器;双波导转换器;悬臂转换器 中图分类号 TN622 文献标识码 A doi: 10.3788/LOP55.030003

Research Progress of Silicon Photonic Mode Size Converters

Hu Juan, Lin Huan, Wang Weijun, Chen Hua, Fang Qing

Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China

Abstract Silicon photonic mode size converter is the key device for silicon based photonic integrated chip to connect with external optical fiber, it plays an important role in integrated optical path. The mode size of the standard fibers does not match the mode size of the nanometer photonic waveguide, so there is a great coupling loss between the standard fiber and the nanometer silicon waveguide, the silicon photonic mode size converters can significantly reduce the optical loss between them. One end of the silicon based photonic mode size converter has a large mode size that matches with the mode size of the standard fiber; the other end has a smaller mode size, which can be matched with the mode size of nano-silicon photonic waveguide, thereby significantly reducing the optical connection loss between the standard fiber and the nano-silicon photonic waveguide. The characteristics of different structures of converters are reviewed, while the advantages and disadvantages of different types of converters in structure, performance and application are compared and analyzed, and the prospect of silicon photonic mode size converters is prospected and some opinions are put forward.

Key words integrated optics; silicon photonic mode size converters; grating coupler; tapered mode size converter; dual waveguide converter; cantilever converter

OCIS codes 130.3120; 130.0250; 130.2790

1 引 言

20世纪60年代以来,光电子集成电路的发展 较为迅速。通过国内外研究人员的努力,硅光子器 件在无源器件和有源器件方面都取得了巨大成就。 基于马赫-曾德尔干涉仪(MZI)结构的硅基调制器 已经实现了高于 50 Gbit/s 的调制速度^[1];基于 PIN 垂直结构的 GeSi 探测器能够完成高于 60 Gbit/s 的 探测效率^[2];基于阵列波导光栅(AWG)接收器的接 收速率超过 320 Gbit/s^[3];悬桥结构的硅基开关能 够实现低于0.5 mW的功耗^[4]。硅光子模斑转换器 作为硅光子集成器件与外部光纤连接的重要器件,

收稿日期: 2017-08-23; 收到修改稿日期: 2017-09-17

基金项目:地区科学基金(61764008)、国家自然科学基金面上项目(61674072)、国家自然科学基金(51304097)

作者简介:胡娟(1993一),女,硕士研究生,主要从事硅基光波导耦合器方面的研究。E-mail: 2905121687@qq.com

导师简介:方青(1977一),男,博士,教授,主要从事硅光子集成器件方面的研究。

E-mail: qingfang@kmust.edu.cn(通信联系人)

一直是硅光子研究的热门领域,同时也是研究难点。 硅的折射率较大,以硅为芯层的光波导器件的 尺寸非常小,与单模光纤相比,相差 2 个数量级,光 波导器件与单模光纤直接对接耦合时存在很大的模 式失配损耗(-25 dB)。由于对准公差小,将硅光子 器件与单模光纤一起封装时,损耗进一步增大。硅 光子模斑转换器作为硅光子集成芯片与外部光纤连 接的重要器件,能够将来自单模光纤的光信号经传 输后以较大的耦合效率以及较低的相关损耗耦合到 尺寸较小的硅基光波导器件中。国内外研究人员已 经报道了各种结构类型的硅光子模斑转换器。为进 一步了解硅光子模斑转换器的研究现状以及发展趋 势,本文综述了不同结构转换器的性能以及优缺点。

2 硅光子模斑转换器的研究背景

从第一支晶体管制成以来,晶体管逐渐取代了 电子管。然而随着集成电路越来越小,一块芯片上 的器件数量激增,芯片上的硅波导结构也要求随之 小型化,但现有的体硅材料及工艺正在接近它们的 物理极限,在进一步减小集成电路特征尺寸方面遇 到了严峻挑战。一方面,基于硅平台的电子器件逐 步进入纳米时代,器件的尺寸大大减小;另一方面, 基于二氧化硅材料的光通信器件因折射率较低而使 得器件的尺寸较大,同时有源光器件和无源光器件 难以在二氧化硅平台上进行光电子集成,这些都限 制了二氧化硅光电子器件的进一步发展。若要进一 步提高芯片的集成度和运行速度,就需要引入高折 射率差的导波层和限制层来减小器件的尺寸。

硅具有较大的折射率,以硅为芯层的硅光子波 导具有超小的器件尺寸;在通信波段,硅是一种透明 材料,硅光子波导具有很小的光传输损耗;硅材料具 有很好的热光效应和等离子效应,能够用来制作低 功耗的高速光电子器件,如调制器、光开关等;锗材 料能够在单晶硅上生长,硅光子集成器件的制作工 艺与互补金属氧化物半导体(CMOS)的制备工艺兼 容,这些优点促使硅光子集成器件在近 10 年快速发 展,并取得了巨大成就,为硅光子集成器件的广泛应 用打下了基础。

近年来,基于纳米光子器件的硅波导吸引了众 多研究者的关注,硅光子学作为开发大规模光子集 成电路(PIC)和下一代光通信的平台显示出巨大潜 力,它为构建一个高度集成的电路提供了可能,而且 SOI(silicon-on-insulator)材料中的硅和二氧化硅的 折射率相差(约为 2)较大,因此,基于 SOI 材料上硅 光子器件的波导尺寸可以大大降低(几百纳米),使 得高密度 PIC 得以实现,并且可以用发展较为成熟 的制备 CMOS 的标准工艺来制备。如此高密度的 芯片上的器件与外部光纤进行信息转换时,会存在 很大干扰,导致信号不稳。器件越来越小,从而需要 一种转换器将外部器件上的信号与芯片上极小元件 的信号进行高效率、低损耗的转换。

3 硅光子模斑转换器的结构类型及研究进展

3.1 光栅耦合器

3.1.1 光栅耦合器的基本原理

光栅耦合器通过光栅的衍射作用将来自单模光 纤的光耦合到硅基光波导上,但并不是所有的入射 光经过光栅的衍射后都可以耦合到波导中,只有满 足布拉格条件的光才能有效地耦合进波导,或者从 波导耦合出去。其必须满足的布拉格条件为

$$k_{0}\sin\alpha + m \frac{2\pi}{\Lambda} = \beta, \qquad (1)$$

式中 $k_0 = (2\pi/\lambda)n_0$ 为空气中的光传播常数; α 为入 射光偏移光栅平面法线的角度;m为衍射级次,为 了实现最大强度的衍射光,一般取m = 1,即利用光 栅的一阶衍射; Λ 为光栅周期; $\beta = (2\pi/\lambda_0)n_{eff}$ 为模 场在光栅结构中以折射率 n_{eff} 传播的传播常数。

经过光栅的衍射作用后,入射光的功率被分成 三个主要部分:向上反射的功率、通过衬底向下泄漏 的功率以及耦合到波导中的功率[5]。因此限制光栅 耦合器效率的因素主要有两个:1) 方向性。传统光 栅耦合器的方向性比较差,通过衬底泄漏的光功率 通常为 35%~45%^[6]。为防止能量从衬底泄漏, Zaoui 等^[7]在光栅底部增加了金属反射镜,实验得 到的耦合损耗为-1.6 dB,1-dB 带宽为48 nm。2) 来自波导光栅衍射的光场模式与单模光纤光场的模 式不匹配。对于均匀光栅耦合器来说,周期和占空比 是恒定的,均匀光栅散射模式的形状可以近似地被视 为指数型,而单模光纤的模式是高斯型的,因此单模 光纤的模式与均匀光栅耦合器散射的模式不匹配,失 配损耗通常大于1 dB^[5]。通过对光栅结构浅层刻蚀 以及逐渐改变占空比,可使从 SOI 光栅结构衍射输出 的光场形状服从高斯分布,从而使波导光栅衍射的光 场与单模光纤的光场相匹配[8-9]。

3.1.2 光栅耦合器的种类

2013年,Zaoui等^[10]将光栅结构改为非周期型, 使衍射光场呈高斯型,从而与标准光纤的模场相匹 配,进一步减小耦合损耗,耦合损耗低至一0.64 dB, 1-dB带宽为44 nm。2014年,Kunze等^[11]采用 COMS 工艺在 SOI 晶片上制备了均匀和非均匀的两种光栅 耦合器,非均匀光栅的扫描电镜图如图 1 所示,测量 得到均匀和非均匀光栅耦合器的耦合损耗分别为一 1.08 dB 和-0.62 dB,1-dB 带宽为 40 nm。

2002年, Ghent大学制作了垂直光栅耦合 器^[12],该耦合器实现了单模光纤与GaAs-AlO_x波 导之间的垂直耦合,不仅可以采用标准的制作工艺, 而且制作方法简单。2011年, Yamada等^[13]制作了 双向垂直光栅耦合器,用它将来自单模光纤的光向 两边传播,耦合损耗进一步减小,但需在底部增加反 射镜,加大了制作的难度。2016年, Wang等^[14]制 作了双向垂直光栅耦合器,其结构如图2所示,实验 测得3-dB带宽高达104 nm,对于横电模(TE模)而 言,耦合损耗为-3.9 dB。该类型耦合器的主要损 耗来自Y型分支处的相位失配,通过使用更长的锥 形结构,并应用相位调谐可以减小相位失配,提高性 能^[15]。Zhang等^[16]提出的光折变长周期波导光栅 耦合器的耦合效率较高,且具有低串扰和高温下稳 定的特点。

光电子器件的背反射最小化对于高频调制性能 来说是非常重要的。背反射主要来源于两个方面: 1)光栅耦合器的二阶反射;2)输入波导与光栅耦

合器的边缘产生的菲涅耳反射。

对于二阶反射,可以利用在光纤与光电子集成 电路表面设置大约10°的倾斜耦合角度来抑制,但 在实际应用过程中受到了一定限制,而且封装也比 较困难[17]。而二元闪耀光栅[18-19]对于消除二阶反 射来说是一个较好的选择。闪耀光栅可以将所有衍 射光"闪耀"成单个衍射级,抑制第二级和高级次衍 射,并可提高光栅的效率和方向性。其他类型的闪 耀光栅,例如三角光栅和平行四边形光栅,不能用标 准刻蚀工艺制造。二元闪耀光栅由均匀高度的可变 子波长柱组成,它是闪耀光栅的三角形齿形的二进 制形式,并且可以在一个刻蚀步骤中制造。制备的 方法与成熟的 CMOS 技术相融合可使批量生产成 为可能。Yu 等^[20]报道的二元闪耀光栅的耦合损耗 为-0.8 dB,3-dB带宽为 65 nm,入射角容差可达到 11.5°。在 2011 年, Yang 等^[21] 报道了亚波长双闪耀 光栅耦合器,它利用不对称结构实现了完全垂直的 光纤的耦合,计算的耦合损耗在 1.55 μm 处为 -1.8 dB,1-dB带宽可达到 80 nm。如果增加布拉 格反射层,损耗能够达到-0.97 dB 左右。该结构的 制备技术与 CMOS 技术兼容,可以通过一步刻蚀得 到,但制作容差较大。2014年,Kunze等^[11]提出了 一种桥接光纤和硅光子集成电路之间间隙的光栅耦 合器,测量得到的耦合损耗为一1.08 dB。

聚焦式光栅耦合器不仅可以减小耦合器的占用 面积,还能将反射回来的光重新对焦,使光远离输入 波导。Na 等^[22]制备的光栅耦合器将脊形波导中的 模式绝热地耦合到平板波导中,在1310 nm 处的背 反射为-27 dB。多伦多大学的 Sacher 等^[23]在 2014年报道了双层光栅结构的聚焦式耦合器,该结 构是在光栅的上面再覆盖一层 Si₃N₄ 光栅结构,测 量得到的耦合损耗为-1.3 dB,1-dB 带宽为 80 nm。 同年,Song 等^[24]制备了如图 3 所示的聚焦式光栅 耦合器结构,扇形波导由晶体硅组成,聚焦式圆形光

图 3 聚焦式光栅耦合器 Fig. 3 Focusing grating coupler

栅结构由多晶硅结构组成,在晶体硅与多晶硅之间 多了一层氧化层。与单层光栅结构相比,聚焦式光 栅耦合器结构的耦合效率提高了 2~3 倍,但仍然较低,在 1.3 μ m 处为 - 2.8 dB,在 1.55 μ m 处为 -3.8 dB。2014年,新加坡微电子研究所的 Zhang 等^[25]在氮化硅平台上通过一步反应离子刻蚀以及 深紫外光刻制备了底部加入两个周期的分布式布拉 格反射镜光栅结构,该结构的耦合损耗为-2.6 dB, 1-dB 带宽为 53 nm。2016年,Zhao 等^[26]用电子束 光刻制作了光栅和反向锥形结合的耦合器,结构如 图 4 所示,光栅部分由 700 nm 的氮化硅波导组成, 耦合损耗为-3.7 dB,1-dB 带宽为 54 nm。由于扇 形结构上刻蚀的大部分是对称的,存在很大的菲涅 耳反射,测量的背反射通常在-20 dB 左右^[26-29]。 为了减小这种反射,光栅的沟槽需要不对称地刻蚀。 2017 年, Song 等^[30] 报道了聚焦式非对称刻蚀结构 的耦合器,结构如图 5 所示, 角度 ϕ 大于 4°时, 该耦 合器的耦合损耗为-0.3 dB, 1-dB带宽的背反射为 -44 dB。

图 4 (a) Si₃N₄ 光栅耦合器的扫描电镜图; (b)反向锥形;(c)光栅区域

Fig. 4 Images of $Si_3 N_4$ grating coupler obtained by scanning electron microscopy; (b) inverse taper tip; (c) grating region

图 5 聚焦式非对称刻蚀的光栅耦合器 Fig. 5 Focused asymmetric etched grating coupler

3.2 悬臂转换器

在底部增加反射镜可以减少衬底泄漏,但制作 较为困难。悬臂结构可以减小模式的泄漏^[31-33], Fang 等^[34]用化学气相沉积和深紫外光刻等方法制 作了悬臂型转换器,该转换器与劈型光纤耦合的一 端的横截面尺寸为 6 μ m×6 μ m,转换器与劈型光 纤之间存在轻微的模尺寸失配。在入射光波长为 1520~1600 nm 时,该转换器与透镜光纤耦合,对于 TE模,测量的耦合损耗为 1.7~2.0 dB;对于横磁模 (TM 模),测量的耦合损耗为 2.0~2.4 dB,产生 1-dB额外损耗的对准容差在 x 和 y 方向上都是 ±1.7 μ m。随后,贝尔实验室制备了类似的转换 器^[35],结构如图 6 所示。测量得到其与 Si₃N₄ 波导 的耦合损耗为-0.7 dB,在 1480~1580 nm 之间的 偏振 相关损耗为 - 0.2 dB,波长相关损耗为 -0.4 dB。

2011年,Fang等[36]通过优化之前的结构,制作 了基于 a-Si 波导的悬臂转换器,该转换器对于 TE 模和 TM 模的 1-dB 带宽都大于 120 nm,产生 1-dB 额外损耗的对准容差对于 TE 模和 TM 模在 x 和 y 方向上分别为±2.8 μm 和±2.1 μm。Jia 等^[37]结合 反向锥形和悬臂结构,用折射率为1.5 的氮化硅作 为中间材料,使得单模光纤和高折射率的波导相匹 配,以减小失配损耗,对结构尺寸的依赖性也相对减 小,在x和y轴上的对准公差均为±3.5 μ m,偏振 相关损耗小于一0.5 dB,但是与透镜单模光纤耦合 时的效率较低。2015年,Barwicz等^[38]制备了 O 波 段超材料耦合器,实现了标准单模光纤与硅纳米波 导之间-1.3 dB的传输损耗,在波长为1310 nm 处, 100 nm光谱范围内的偏振相关损耗为-0.6 dB。然 而,这种悬臂型转换器的长度约为 875 μm,这对硅 光子器件来说是相当长的。

图 6 具有悬臂波导与折射率匹配包层的光纤转换器

Fig. 6 Fiber converter with cantilevered waveguide and index-matched cladding

2016年,本课题组制作了具有 3D 锥形功能的 悬臂型模斑转换器^[39],如图 7(a)所示。悬臂结构 的使用有效地防止了扩展模式泄漏到衬底。二氧 化硅梁的设计用于支撑芯体结构,并且对耦合效 率没有影响。图 7(b)中的白色区域表明衬底硅与 二氧化硅波导连接,模式会因此而泄漏到衬底, 图7(c)显示 SiO₂波导结构在悬臂横梁作用下完

全悬空。这种悬臂型模斑转换器具有低耦合损 耗、波长不相关、带宽较宽等优良的性能。通过实 验测量得到 TE 模的最低耦合损耗为-1.5 dB, TM 模的最低耦合损耗为-2.1 dB。对于 TE 模和 TM 模,1-dB 带宽都大于 100 nm,产生 1-dB 额外 损耗的对准公差在 x 和 y 方向分别为 ± 2.5 μ m 和 ± 2.0 μ m。

图 7 (a)悬臂波导转换器的扫描电镜图像(点线表示第三部分埋在二氧化硅悬臂波导中的硅重叠锥形); (b)非完全悬臂结构的光学显微镜图像;(c)完全悬臂结构的光学显微镜图像

Fig. 7 (a) Image of cantilevered fiber-to-waveguide converter obtained by scanning electron microscopy

(dot line represents Si overlapped tapers buried in SiO_2 cantilevered waveguide in the 3^{rd} section);

(b) image of non-completely cantilevered structure obtained by optical microscopy;

(c) image of completely cantilevered structure obtained by optical microscopy

3.3 锥形转换器

锥形转换器是一种最直观的转换器,从单模光 纤出射的光经锥形转换器传输后,模场尺寸压缩到 与纳米波导的尺寸相匹配。2016年,Shiraishi等^[40] 在之前报道的结构^[41]的基础上通过反应离子刻蚀 加入一个薄平板波导,该结构不需要对垂直向下锥 度的厚度进行严格控制,但其耦合效率仍比较低,且 偏振敏感性较高。锥形转换器急剧变化的宽度会引 起一个短线性锥度末端的散射损耗,通过逐步优化 每段的参数,可以在很大程度上消除这种散射损耗。 Liu 等^[42]提出的楔形光纤和基于二维模斑转换器的 多量子阱平面光波光路芯片实现了光场的高效耦 合。Zou 等^[43]将锥形波导逐段优化,制备了短而高 效的转换器,该结构的测试图如图 8(a)所示。在图 8(c)中可以看到该锥形并不是平滑的渐缩,每一段 都是 经 过 优 化 之 后 得 到 的,在 波 长 为 1530 ~ 1540 nm处测量得到的耦合损耗为-0.56 dB。该结 构的耦合效率是相同长度线性锥形的三倍。

2002年,Shoji等^[44]在锥形结构上覆盖了一层 多聚物波导,将其作为光纤与硅波导之间的物质,折

图 8 转换器的扫描电镜照片^[43]。(a)整体视图; (b)放大级联转换器;(c)放大单转换器

Fig. 8 Pictures of converters obtained by scanning electron microscopy^[43]. (a) Overall view; (b) zoom-in cascaded converters; (c) zoom-in single converter

射率可以在 1.5~2 之间变化,实验测得的耦合损耗 为一0.8 dB。2010 年,Pu 等^[45]在聚合物波导与反 向锥形硅波导之间加入二氧化硅薄膜,不但减少了 聚合物 N—H 键对硅波导中能量的吸收,而且防止 了硅波导被等离子体刻蚀或损坏。Takei 等^[46]提出 用 knife-edge 锥形代替硅波导尖端锥形结构。与传 统的锥形结构相比,knife-edge 锥形结构在宽度和 高度上都逐渐向顶端减小,由于其长宽比相对较低, 因此锥形尖端较为坚固,制作过程中不易损伤锥形 结构。2015 年,Maegami 等^[47]制备的具有二氧化 硅间隔的双波导转换器中用到了 knife-edge 锥形结 构,如图9所示,实验测得的TE模和TM模的耦合 损耗都是一1.5 dB,在C波段和L波段区域的波长 相关性较小。

3D 锥形转换器能够在垂直方向上有效地将纳 米波导的模式展宽。与拉锥光纤类似的 3D 锥形转 换器,能够将模斑的大小在水平、垂直方向上同时压 缩^[48-52]。2011年,Liao 等^[50]用光刻法制备了如图 10 所示的转换器,该 3D 锥形转换器由 SU8 材料组 成,耦合损耗为-3 dB,未对准公差在 x 方向和 y方向上分别为 3.5 μ m 和 3~5 μ m。2013年,Liao 等^[50]通过优化该结构,使耦合效率提高,但偏振相 关损耗仍比较大。

为了说明近年来硅光子模斑转换器的发展情况,表1给出了几种典型硅光子模斑转换器的性能。

图 9 具有二氧化硅间隔物的模斑转换器

图 10 3-D 锥形转换器示意图

Fig. 10 Schematic of 3-D tapered converter

表 1 硅光子模斑转换器性能比较

Table 1 Comparison of performance of sincon photonic mode size conver	Table 1	Comparison	of performance	of silicon	photonic	mode	size converte
---	---------	------------	----------------	------------	----------	------	---------------

Coupler type	Coupling loss with	Doliobility	Polarization	Defenses	
Coupler type	single mode fiber $/\mathrm{dB}$	Kellability	characteristics	Reference	
Nonuniform grating coupler	-0.62 (TE)	Excellent	Related	[11]	
Bidirectional vertical grating coupler	-3.9 (TE)	Good	Related	[14]	
Focusing grating coupler	-2.8 (TE)	Good	Related	[24]	
Focused asymmetric etched grating coupler	-0.3 (TE)	Excellent	Related	[30]	
Cantilevered fiber-to- waveguide converter	-1.5 (TE) -2.1 (TM)	Good	Not related	[39]	
Horizontal up-and vertical down-tapers	-2.6 (TE)	Good	Related	[40]	

4 硅光子模斑转换器的制备

硅光子模斑转换器的制备技术与其他硅基光电

子器件的制备技术一样,主要有电子束曝光、深紫外 光刻、气相沉积以及刻蚀等,对精度以及工艺的要求 非常高,工艺误差很可能会导致实验结果与模拟数 据之间出现很大差别。

硅光子模斑转换器的制备过程为:首先,将硅片 清洗烘烤干净;然后用制备薄膜的方法将所需介质沉 积在硅片上,沉积方法主要有物理气相沉积法和化学 气相沉积法,物理气相沉积一般适用于金属薄膜的生 长,绝缘体或半导体薄膜的生长一般采用化学气相沉 积法;接下来,利用紫外光刻或电子束曝光的方法将 预制在掩模板上的图案转移到表面的光刻胶薄层上, 紫外光刻的速度快,因此精度很难控制,波导器件对 工艺的要求很高,所以一般会选用电子束曝光,虽然 速度慢,但精度高;将图案转移到材料中的过程一般 会用到干法刻蚀和湿法刻蚀,湿法刻蚀是纯化学反应 过程,成本较高,现在用的主要刻蚀方法一般是干法 刻蚀中的物理和化学相结合的刻蚀方法,具有较好的 方向性和选择性,而且速度也大大加快。以 3D 锥形 转换器为例说明简要的制备步骤,如图 11 所示。

5 结束语

光栅耦合器是目前最常见的一种将硅光子器件 与光纤耦合的器件。在芯片设计上,光栅耦合器可 以放置在芯片的任何位置,使得集成器件的整体设 计更加方便,而且芯片不需要划片以及端面抛光,避 免了因划片和抛光引起的波导端面损伤,有较大的 对准容差以及高耦合效率。但是光栅的色散工作原 理造成了器件的有效谱宽较窄,限制了其在密集波 分复用(WDM)器件上的广泛应用。光栅耦合器的 偏振敏感性较高,难以同时在 TE 和 TM 模式下有 效工作。

悬臂转换器是在 2010 年左右开始出现的一种 较新型的耦合器件,该器件具有低的耦合损耗、宽的 工作谱宽、偏振不敏感、大的耦合容差等较好的光学 性能,适合在所有功能芯片上使用;目前该器件还未 有效地解决与光纤的封装问题,限制了其在商用芯 片上的使用。

锥形模斑转换器是较早提出的一种硅光子波导 与光纤耦合的器件,该器件与锥形光纤耦合时具有 较好的耦合效率和低的偏振损耗;但该器件与光纤 的耦合容差较小,与平头光纤耦合时的光学性能较 差,难以在商用芯片上广泛应用。

在未来商用硅光子器件中,光栅耦合器与悬臂

耦合器因与平头光纤耦合时具有较好的光学性能和 较低的封装成本而具有更好的应用前景。完全解决 悬臂耦合器与平头光纤的封装问题之后,悬臂耦合 器将会成为商用硅光子芯片的最佳选择。从工艺上 来看,几种器件的加工成本与难点基本相当。通过 比较几种常见的硅光子模斑转换器的结构性能以及 制作工艺可知,近年来转换器的发展较为迅速,结构 的尺寸越来越小,耦合效率进一步提高,制备工艺也 越来越成熟。

尽管存在各种问题,但整体看来,转换器仍处于 发展较为迅速的阶段,各种转换器的实验结果也越 来越接近商用标准,随着科技的发展以及工艺的改 进,硅光子纳米波导与平头光纤具有更高效的耦合、 大的带宽、偏振无关等性能,必将能够在商用硅光子 器件中得到广泛应用。

参考文献

- Tu X, Liow T Y, Song J, et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes [J].
 Optics Express, 2013, 21(10): 12776-12782.
- [2] Chen H, Verheyen P, Heyn P D, et al. -1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond [J]. Optics Express, 2016, 24 (5): 4622-4631.

- [3] Fang Q, Liow T Y, Song J F, et al. WDM multichannel silicon photonic receiver with 320 Gbps data transmission capability[J]. Optics Express, 2010,18 (5): 5106-5113.
- [4] Fang Q, Song J F, Liow T Y, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms[J]. IEEE Photonics Technology Letters, 2011, 23(8): 525-527.
- [5] He L, Liu Y, Galland C, et al. A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography [J]. IEEE Photonics Technology Letters, 2013, 25(14): 1358-1361.
- [6] Zhang H, Li C, Tu X, et al. High efficiency silicon nitride grating coupler with DBR [C]. Optical Fiber Communications Conference and Exhibition, San Francisco, 2014: 14560355.
- [7] Zaoui W S, Rosa M F, Vogel W, et al. Costeffective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency [J]. Optics Express, 2012, 20(26): 238-243.
- [8] Xiao Z, Luan F, Liow T Y, et al. Vertical coupling for silicon nitride waveguides using silicon grating couplers and transitions [C]. Photonics Conference, Burlingame, 2012: 13149903.
- [9] Wu H, Han M F, Guo X. Broadband high-efficiency grating coupler based on the tailored artificial equivalent refractive index [J]. Acta Optica Sinica, 2014, 34(11): 1105001.
 武华,韩明夫,郭霞.基于等效折射率人工剪裁的宽

带高效光栅耦合器[J].光学学报,2014,34(11): 1105001.

- [10] Zaoui W S, Kunze A, Vogel W, et al. CMOScompatible nonuniform grating coupler with 86% coupling efficiency [C]. European Conference and Exhibition on Optical Communication, London, 2013: 13841840.
- [11] Kunze A, Letzkus F, Burghartz J, et al. Bridging the gap between optical fibers and silicon photonic integrated circuits[J]. Optics Express, 2014, 22(2): 1277-1286.
- Taillaert D, Bogaerts W, Bienstman P, et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers [J]. IEEE Journal of Quantum Electronics, 2002, 38(7): 949-955.
- [13] Yamada H, Nozawa M, Kinoshita M, et al. Vertical-coupling optical interface for on-chip optical interconnection[J]. Optics Express, 2011, 19(2):

698-703.

- Wang Y, Yun H, Jaeger N A, et al. Broadband bidirectional vertical grating coupler [C]. Optical Fiber Communication Conference and Exhibition, Anaheim, 2016: 16244676.
- [15] Zhang Z, Zhang Z, Huang B, et al. CMOScompatible vertical grating coupler with quasi Mach-Zehnder characteristics [J]. IEEE Photonics Technology Letters, 2013, 25(3): 224-227.
- [16] Zhang M, Ren J W, Chen W, et al. Design and analysis of photorefractive long-period waveguide grating coupler [J]. Acta Optica Sinica, 2015, 35 (3): 0313002.
 张明,任建文,陈文,等.光折变长周期波导光栅耦 合器的设计和分析[J].光学学报, 2015, 35(3): 0313002.
- [17] Zhang C, Jin C, Zhang J, et al. Silicon waveguide grating coupler for perfectly vertical fiber based on a tilted membrane structure[J]. Optics Letters, 2016, 41(4): 820-823.
- [18] Zhou Z. Silicon photonic devices based on binary blazed gratings [J]. Optical Engineering, 2013, 52 (9): 091708.
- [19] Zhou W, Yang J, Zhang H, et al. Design of highefficiency fully-etched binary blazed gratings nearly wertical coupler [J]. IEEE Photonics Technology Letters, 2012, 24(12): 1048-1050.
- [20] Yu L, Liu L, Zhou Z, et al. High efficient vertical binary blazed grating coupler for chip level optical interconnections [C]. Conference on Lasers and Elecro-Optics (CLEO)-Laser Scicence to Pholtonic Applications, San Joses, 2014: 14821948.
- [21] Yang J, Zhou Z, Jia H, et al. High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling
 [J]. Optics Letters, 2011, 36(14): 2614-2617.
- [22] Na N, Frish H, Hsieh I W, et al. Efficient broadband silicon-on-insulator grating coupler with low back reflection [J]. Optics Letters, 2011, 36 (36): 2101-2103.
- [23] Sacher W D, Huang Y, Ding L, et al. Ultra-efficient and broadband dual-level Si₃N₄-on-SOI grating coupler[C]. Conference on Lasers and Elecro-Optics (CLEO)-Laser Scicence to Pholtonic Applications, San Jose, 2014: 14832743.
- [24] Song J H, Budd R A, Lee B G, et al. Focusing grating couplers in unmodified 180-nm silicon-oninsulator CMOS [J]. IEEE Photonics Technology

Letters, 2014, 26(8): 825-828.

- [25] Zhang H, Li C, Tu X, et al. High efficiency silicon nitride grating coupler with DBR[J]. Applied Physics A, 2014, 115(1): 79-82.
- [26] Zhao X, Li D, Zeng C, et al. Compact grating coupler for 700-nm silicon nitride strip waveguides
 [J]. Journal of Lightwave Technology, 2016, 34(4): 1322-1327.
- Wang Y, Yun H, Lu Z, et al. Apodized focusing fully etched subwavelength grating couplers [J].
 IEEE Photonics Journal, 2015, 7(3): 1-10.
- [28] Wang Y, Shi W, Wang X, et al. Design of broadband subwavelength grating couplers with low back reflection [J]. Optics Letters, 2015, 40(20): 4647-4650.
- [29] Li Y, Li L, Tian B, et al. Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay [J]. IEEE Photonics Technology Letters, 2013, 25(13): 1195-1198.
- [30] Song J H, Rottenberg X. Low-back-reflection grating couplers using asymmetric grating trenches[J]. IEEE Photonics Technology Letters, 2017, 29 (4): 389-392.
- Bakir B B, Gyves A V D, Orobtchouk R, et al.
 Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-oninsulator wafers [J]. IEEE Photonics Technology Letters, 2010, 22(11): 739-741.
- [32] Fang Q, Song J F, Liow T Y, et al. Cleaved fiberto-nano waveguide mode converter for silicon photonics devices [C]. Photonics Global Conference, Singapore, 2012: 13291845.
- [33] Wood M, Sun P, Reano R M. Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits[J]. Optics Express, 2012, 20(1): 164-172.
- [34] Fang Q, Liow T Y, Song J F, et al. Suspended optical fiber-to-waveguide mode size converter for silicon photonics[J]. Optics Express, 2010, 18(8): 7763-7769.
- [35] Chen L, Doerr C R, Chen Y K, et al. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si₃N₄ or Si waveguides[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1744-1746.
- [36] Fang Q, Song J, Luo X, et al. Mode-size converter with high coupling efficiency and broad bandwidth [J]. Optics Express, 2011, 19(22): 21588-21594.

- [37] Jia L, Song J, Liow T Y, et al. Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material
 [J]. Optics Express, 2014, 22(19): 23652.
- Barwicz T, Jantapolczynski A, Khater M, et al. An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides[C].
 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2015: 15215966.
- [39] Fang Q, Song J, Luo X, et al. Low loss fiber-towaveguide converter with a 3-D functional taper for silicon photonics [J]. IEEE Photonics Technology Letters, 2016, 28(22): 2533-2536.
- [40] Shiraishi K, Chen S T. A spot-size converter with concatenated up-and down-tapers followed by a thin slab-waveguide [J]. IEEE Photonics Technology Letters, 2016, 28(4): 485-488.
- Shiraishi K, Takasaki R, Yoda H, et al. A viable spot-size converter for coupling between a single-mode fiber and a silicon-wire waveguide [C]. International Conference on Electronics Packaging, Toyama, 2014: 6826792.
- [42] Liu X, Xiao J B, Sun X H. Alignment and coupling between planar lightwave circuit chip and wedgeshaped fiber[J]. Acta Optica Sinica, 2007, 27(4): 680-684.
 刘旭,肖金标,孙小菡. 楔形光纤与半导体多量子阱 平面光波光路芯片的耦合分析[J]. 光学学报, 2007, 27(4): 680-684.
- [43] Zou J, Yu Y, Ye M, et al. Short and efficient modesize converter designed by segmented-stepwise method[J]. Optics Letters, 2014, 39(21): 6273.
- [44] Shoji T, Tsuchizawa T, Watanabe T, et al. Low loss mode size converter from 0.3 μm square Si waveguides to singlemode fibres [J]. Electronics Letters, 2002, 38(25): 1669-1670.
- [45] Pu M, Liu L, Ou H, et al. Ultra-low-loss nanotaper coupler for silicon-on-insulator ridge waveguide
 [J]. Optics Communications, 2010, 283(19): 3678-3682.
- [46] Takei R, Suzuki M, Omoda E, et al. Silicon knifeedge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography[J]. Applied Physics Letters, 2013, 102(10): 101108.
- [47] Maegami Y, Takei R, Omoda E, et al. Spot-size converter with a SiO₂ spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling [J]. Optics Express, 2015, 23(16): 21287-21295.

- [48] Ku K N, Lee M C M. Cascade of two opposite tapers for butt-coupling between fibers and silicon photonic wires with large misalignment tolerance and low polarization dependency [C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anabeim, 2013: 13582278.
- [49] Yu X, Pandraud G, Pakula L S, et al. Combination of LPCVD and PECVD SiC in fabricating evanescent waveguides[C]. Annual International Conference on Nano/Micro-Engineered and Molecular Systems, Sendai, 2016: 16517808.
- [50] Liao C W, Yang Y T, Huang S W, et al. Fibercore-matched three-dimensional adiabatic tapered

couplers for integrated photonic devices [J]. Journal of Lightwave Technology, 2011, 29(5): 770-774.

- Li L H, Higo A, Kubota M, et al. A novel etching-oxidation fabrication method for 3D nano structures on silicon and its application to SOI symmetric waveguide and 3D taper spot size converter [C]. IEEE/LEOS Internationall Conference on Optical MEMS and Nanophotonics, Freiburg, 2008: 10179791.
- [52] Fang N, Yang Z, Wu A, et al. A novel method of fabricating 3D spot-size converter on (111) SOI[C].
 IEEE International SOI Conference, New Paltz, 2008: 10322882.